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CODING AND ENUMERATION OF TREES THAT CAN BE LAID UPON A 
HEXAGON LATTICE 

E.C. KIRBY 
Resource Use Institute, 14 Lower Oakfield, Pitlochry, Perthshire PH16 5DS, Scotland, UK 

Abstract 

A tree that can be superimposed upon a hexagon lattice is called a hexagon lattice 
tree. A method for mechanically coding, enumerating and drawing these objects is 
described, and has been tested for trees with up to ten vertices. For storage and information 
transmission, the code uses an expanded version of the N-tuple code in which edge 
vector elements having one of four possible values are inserted. For establishing uniqueness, 
it is used in combination with a hexagon lattice reference grid whose vertices are 
numbered sequentially in the tightest possible outward spiral. Published rules for the 
derivation of N-tuple codes by hand are commented on, and a small error pointed out. 

1. Introduction 

In recent work on Hamiltonian or path-Hamiltonian polyhexes [1,2] and 
sextet 2-factorable polyhexes [3], a special subgraph of a polyhex referred to as a 
"branching graph" was used. (A Hamiltonian path - a path that visits every vertex 
just once - i s  a particular kind of spanning tree, and is of chemical interest in 
connection with magnetic ring current calculations [4, 5].) The branching graph of 
a polycyclic graph is the set of vertices of degree greater than two with the set of 
edges joining pairs of these branching vertices. Only a little has been done towards 
the characterisation of such objects [6], and this work was motivated partly in an 
attempt to understand them better. For example, the branching graphs of some 
polyhexes are trees, but which trees and why? 

Several polyhexes can share a tree as their branching graph, by the tree 
assuming different geometric conformations. We thus wanted to know all the ways 
in which a given tree (of maximum valency three) can be laid upon a hexagon 
lattice. Trees that can be so placed are called lattice trees, a class of  lattice animal, 
and they have been used to represent randomly branched polymers in dilute solution. 
They can also model geometric isomers of hydrocarbon polyenes, and similar planar 
structures in which rotation is restricted. 

Another practical subject in which the sets of such isomers are of  interest is 
nutrition and fatty acid chemistry for, although little attention has been paid to this 
point, there have been suggestions that the geometric isomers of triglycerides arising 
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in partial hydrogenation processes may be metabolised in different ways that are 
not all good for health [7]. 

Attempts to derive mathematical expressions for deducing the numbers of 
lattice animals appear to have been only partially successful [8]. In any case, for the 
purposes mentioned here the ability to draw the whole set, not just to determine their 
total number, is required. The strategy has been to develop a moderately simple 
method for encryption of the isomers that can reliably be used to generate first a field 
of code values containing all those of interest, and then a list of  all distinct isomers. 

2. The coding of hexagon lattice trees 

Amongst all the possible trees, only 3-trees are of interest here, because only 
they can be hexagon lattice animals. The first problem is how best to encode such 
animals concisely, and to recognize any previously encountered. 

There are twelve possible ways of drawing a 3-tree so that its edges are 
parallel to the edges of  a hexagon lattice: three rotational variants and their mirror 
images, for two classes of  vertex (corresponding to whether, when acting as a centre 
of rotation on a vertically aligned lattice, the vertex can have an incident vertical 
edge "up" or "down"). To deal with these systematically, it is useful to number the 
hexagon lattice in a spiral manner. 

Such a spiral grid was shown earlier [3] to provide a convenient means of  
encoding structures, such as polyhexes,  that are made of  hexagons and are 
superimposable upon a hexagon lattice. The same principle can be applied here, by 
using a grid in which the vertices (rather than, as previously [3], hexagons) are 
numbered sequentially in the tightest possible outward spiral, arbitrarily chosen to 
be clockwise (1). It is necessary to examine the rotations about each vertex in turn. 
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The total number of superimpositions to be made is 6 x N (including possible 
symmetry-induced redundancies). These are listed, and the one yielding the lowest 
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lexicographically ordered set of  vertex reference numbers is chosen. An edge list 
is then written in terms of  pairs of  these vertex reference numbers, and this defines 
the lattice tree. 

This list could itself be used as a code for the lattice tree but, as with edge 
lists generally, it is somewhat inconvenient for manipulation, and it tends to have 
rather large vertex label number values. A further consideration is that this code, 
whilst it provides a unique identification and allows different lattice animals to be 
distinguished, does not help towards their systematic enumeration. 

Trees in general, with undefined geometry, can be encoded uniquely and 
concisely with the N-tuple code of Knop and co-workers [9]. (See appendix 1 for 
a description, and for a report on a small error that has appeared in more recently 
published work.) This can be expanded to provide a concise means of  conveying 
geometric information too. 

To do this, the N-tuple code of  n digits for a 3-tree is expanded into what 
is here called a "GN-tuple" code ("G" signifying "geometric") with 2 × n - 1 digits. 
The extra n -  1 elements are vector digits, and are interspersed between each pair 
of  the n N-tuple digits. They indicate in which of  four possible directions an edge 
from a lower to a higher numbered vertex should be drawn. Each such GN-tuple 
refers unambiguously to a specific lattice animal. Reconstruction will reproduce 
the animal on a rectangularly distorted hexagon lattice (2) (see ref. [9]) 
rather than the more familiar one (3), but this is easily corrected. It is also fairly 

!i!i!i 
! i i i 

(2) (3) 

simple to write a program to read a GN-tuple code and to generate a recognizable 
screen representation of it. This use of the spaces between the elements of  
the N-tuple code was recently foreshadowed in ref. [10], where it is pointed 
out that non-carbon structures, and multiple bonds, can be accommodated in this 
way. 

As an example, one of  the fifteen possible conformations of the tree (4) is 
(5a) or (5b) (they are equivalent). Its N-tuple code value (appendix 1) is 31110100, 
which forces the labelling shown. 
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N-tuple code = 31110100 

(4) (5a) (5b) 

For the eight-vertex tree (4) there are of course seven edges. These can be 
listed together with a mapping to elements of the N-tuple, and assigned vectors as 
follows: 

Elements of Edge vector 
N-tuple code Edge (1 = up; 2 = right; 3 = down; 4 = left) 

3 null null 
1 1 - 2  1 
1 2 - 3  2 
1 3 - 4  2 
0 4 - 5  3 
1 1 - 6  4 
0 6 - 7  4 
0 1 - 8  2 

Interleaving the edge vectors with the elements of the N-tuple code gives a GN- 
tuple code value of 311212130414020 for (5a)/(5b). 

This provides an alternative means for unambiguously describing a particular 
hexagon lattice animal. In comparison with the spiral grid edge-list described above, 
this GN-tuple code is very convenient for manipulation, but it is somewhat more 
difficult to ensure uniqueness. This is because, although there are only twelve 
possible orientations (and the position of the centre of rotation makes no difference), 
the code value also depends upon how the tree is labelled. The labelling forced upon 
the tree by its N-tuple code is unique only to the point of isomorphism. Vertices 
that are equivalent by symmetry in a tree of undefined geometry may no longer be 
so in one of the tree's lattice animals; for example, (6a) and (6b) have different 

o 5  e 4  
I I 
o 1 • 

2 e ~  2 • ~ 3 

31 ! 
4 5 

(6a) (6b) 



E.C. Kirby, Coding and enumeration of trees 191 

vector tuples (4321 and 1212, respectively). It would be possible to ensure that 
every possible labelling is considered, but this seems quite complicated. 

The GN-tuple does, however, have another very attractive feature that makes 
its use worthwhile: it provides a simple means of describing every possible hexagon 
lattice tree at least once. Thus, the GN-tuple of an n-vertex tree will contain 
n - 1 elements, each of which has a value in the range 1 - 4  or, in other words, the 
geometry can be described by a base-4 number containing n -  1 digits. A set of  
4(,-1) base-4 numbers will therefore contain at least one representation of  each 
possible conformation, and provided that repeated structures can be recognised, 
enumeration is straightforward. 

The remaining problem is to ensure that repeated structures are recognised, 
so that unique GB-tuple codes can be generated, and for this work, this was achieved 
by combining the two approaches of a "spiral" edge-list and a "geometric tuple" 
into a single encoding and enumeration algorithm. 

3. The coding and enumerat ion of the hexagon lattice 3-trees 

A given tree of  n vertices has one unique N-tuple code [9] and a number of  
ways in which it can be superimposed upon a hexagon lattice. The working enumeration 
variable is the tuple of  n - 1 vector digits that represent the orientation of the edges. 
Every array of  digits from 1 1 1 . . .  1 to 4 4 4 . . .  4 is tested to see whether a lattice 
tree can be drawn from it. If it can, then the vector tuple is used to generate a subset 
of  the vertices of  the hexagon reference grid (1), and its minimum rotational variant 
is selected for temporary storage. In most cases, vertices alone are sufficient for this 
purpose, but it is of  course sometimes necessary to invoke the connections too. 

If the same structure is generated by some other set of  digits (corresponding 
to another implicit N-tuple labelling), it will be recognised by its spiral grid synonym, 
and the new set of  vector digits will be substituted if and only if lexicographically 
smaller than the existing one in store. The end result is thus a list consisting of GN- 
tuple codes defined in a unique manner representing all the possible hexagon lattice 
3-trees with n vertices. It should be emphasised that in this scheme the value of  the 
GN-tuple code does not necessarily have its minimum possible value; rather, it has 
the minimum value associated with an edge list written in terms of  the set of  
minimum vertex values on a spirally numbered hexagon reference grid. 

A simple example is shown in appendix 2, and some numerical results of  the 
enumeration are shown in table 1. The time taken increases roughly with the fourth 
power of n -  1, and while this was satisfactory for n < 10, a more sophisticated 
method would soon be needed for larger systems. A small economy can be made 
by standardising the first two elements of the trial vector tuple. This is because there 
is only one non-equivalent way in which two incident edges can be drawn upon a 
hexagon lattice; so search time need be proportional only to (n - 3) 4. It is likely that, 
with care, some further standardisations of  this nature could be made before they 
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Table 1 

Numbers of geometric isomers of trees of up to degree three (hexagonal lattice animals) with 
up to ten vertices. N = number of vertices; R = sequential reference number in ascending order 
of N-tuple (Knop et al.); NT = N-tuple (refo [9]); I = number of geometric isomers counted; 
B1 = number of geometric isomers that are the branching graph of some polyhex; B2 = number 
of geometric isomers that are the branching graph of some singly connected poly-polyhex [6]. 

N R NT I B1 B2 N R NT I B1 B2 

1 1 0 1 10 1 2111111100 61 1 15 
2 1 00 1 1 0 2 3110110110 10 1 0 
3 1 200 1 3 3111011010 54 0 4 
4 1 2100 2 1 0 4 3111011100 31 1 1 

2 3000 1 1 0 5 3111101010 26 0 3 
5 1 21100 3 6 3111101100 52 3 6 

2 31000 1 7 3111110100 54 1 7 
6 1 211100 6 1 2 8 3111111000 27 1 7 

2 310100 3 1 0 9 3111120000 5 1 2 
3 311000 2 1 0 10 3111210000 12 1 1 
4 320000 1 1 0 11 3112100100 16 1 1 

7 1 2111100 9 12 3112101000 6 0 1 
2 3101010 2 13 3112110000 14 0 0 
3 3110100 8 14 3121010100 14 0 0 
4 3111000 4 15 3121100100 27 3 0 
5 3120000 1 16 3121101000 14 0 0 
6 3210000 2 17 3121110000 14 1 1 

8 1 21111100 18 1 5 18 3121200000 2 1 0 
2 31101010 8 0 1 19 3210101010 7 0 1 
3 31101100 9 2 0 20 3211001010 14 1 0 
4 31110100 15 1 1 21 3211001100 18 2 0 
5 31111000 7 1 2 22 3211010100 30 0 1 
6 31120000 2 0 0 23 3211011000 9 0 0 
7 31210000 4 1 0 24 3211100100 27 1 0 
8 32100100 6 1 0 25 3211101000 13 1 1 
9 32101000 3 1 0 26 3211110000 13 1 4 

10 32110000 4 1 0 27 3211200000 3 0 0 
11 32200000 1 1 0 28 3212000100 7 1 0 

9 1 211111100 31 29 3212001000 4 0 0 
2 311011010 15 30 3212100000 7 1 0 
3 311101010 14 31 3220011000 2 0 0 
4 311101100 29 32 3220020000 1 1 0 
5 311110100 27 33 3221000100 9 0 0 
6 311111000 14 34 3221001000 8 1 0 
7 311120000 2 35 3221010000 4 0 0 
8 311210000 7 36 3221100000 7 2 0 
9 312100100 9 37 3222000000 2 1 0 

10 312101000 4 
11 312110000 7 
12 321010100 8 
13 321100100 15 
14 321101000 8 
15 321110000 7 
16 321200000 2 
17 322001000 1 
18 322100000 4 
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become too unwieldy, but these were not attempted here. In table 1, the set of  each 
tree size is ordered by N-tuple code. If  the numbers of  isomers are plotted against 
their ordinal number with n increasing (not shown here), a somewhat  similar overall 
distribution pattern occurs in each case, though with increasing complexity. It is 
possible that this may be fractal in type. 

4. The enumeration of hexagon lattice paths 

This special case of  the preceding problem can be solved independently by 
using the nomenclature of  organic chemistry for unsaturated hydrocarbon chains, 
where each double bond that is not at the end of  a chain is described as "cis" or 
"trans". Thus, a chain of  m edges (and m + 1 vertices) is treated as a fully conjugated 
polyene, so that each of  the m - 2 internal edges may be categorised as cis or trans, 
and the whole uniquely encoded as a sequence of  elements having one of  two 
values. Obviously,  this is equivalent to a binary number, where bits 0 and 1 are used 
to represent (in an arbitrary mapping) cis and trans, respectively. A set o f  binary 
numbers of  X digits contains codes for all the c i s - t rans  isomers (hexagon lattice 
chains) with X + 3 vertices. It remains to identify those that are iso-codal. The 
numbers can be partitioned into those that are palindromic (i.e. that read the same 
forwards as backwards and have a vertical plane of  symmetry) and those that are 
not. The former represent isomers, while the latter can be grouped into pairs that 
are backward reading images of  each other. One more restriction can be imposed: 
it can easily be seen that in planar hexagon lattice animals, it is not impossible to 
have a continuous sequence of  more than three "cis" edges. Using the above convention 
therefore, all binary numbers containing strings of  more than three zeros are eliminated. 

For example: a chain with seven vertices has six edges and four internal 
edges. The field to be examined for c is - t rans  isomers therefore has sixteen binary 
numbers. If  0 represents cis and 1 trans, then the list is as follows: 

1. 0000 Not valid (more than 3 consecutive cis edges) 
2. 1 0001 Paired 
3. 2 0010 Paired 
4. 3 0011 Paired 
5. 0100 The same as 3 
6. 4 0101 Paired 
7. 5 0110 Symmetrical 
8. 6 0111 Paired 
9. 1000 The same as 2 

10. 7 1001 Symmetrical 
11. 1010 The same as 6 
12. 8 1011 Paired 
13. 1100 The same as 4 
14. 1101 The same as 12 
15. 1110 The same as 8 
16. 9 1111 Symmetrical 
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Table 2 

A count of the possible cis-trans isomers of fully 
conjugated polyenes deduced from binary numbers. 

Number of vertices Number of isomers 

2 1 
3 1 
4 2 
5 3 
6 6 
7 9 
8 18 
9 31 

10 61 
11 110 
12 214 
13 398 
14 771 
15 1458 

There are therefore nine lattice chains with seven vertices, and they can easily be 
drawn from these binary codes. Table 2 shows some more results of  this method 
of  enumeration, and where the results overlap with table 1, there is full agreement. 
It is possible to extend this approach to some other fairly simple trees such as (7) 
and (8). In each case, it is necessary to determine whether there are symmetry 

(7) (8) 

redundancies, and what continuous cis sequences are not allowed. Not surprisingly, 
however,  the process soon becomes very complicated with increasing size and 
number of  branches. 

Appendix 1: N-tuple codes 

This efficient code [9] is applicable to trees. The N-tuple code value for a 
tree with n vertices consists of  a string of  n digits, the last one of  which is always 
zero. The first has a value corresponding to the highest valency within the graph, 
and if more than one vertex has this valency, then the root vertex will be the one 
that results in the lexicographically highest code value. The next digit represents the 
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adjacent vertex of highest valency, but its actual value is less than this. Again, if 
there is a choice then each possibility is followed until a difference emerges, whereupon 
the highest valued route is taken. The process continues in a "depth first manner" 
until all vertices of the tree have been accounted for, and the highest N-tuple code 
value obtained. 

Each element of the N-tuple code is associated with a particular vertex, and 
so there is an induced labelling of the graph. The tree represented by an N-tuple 
string is unique, in the sense that no pair of non-isomorphic trees can have the same 
value. Where there is symmetry, however, the induced labelling is not unique, and 
the tree (9), for example, could be relabelled in several equally legitimate ways. 

8 7 3 4 

10 9 5 6 

N-tuple code = 3210101010 

(9) 

Computer algorithms have been written for generating N-tuple codes, and 
these have been used for enumerating trees [9]. Subsequently, the technique was 
used as part of a more comprehensive code that can be used for polycylic 
structures [11-13].  It should be noted, however, that a minor, though slightly 
misleading error has arisen during this work. In an effort to simplify code derivation, 
Randi6 and others formulated a set of rules suitable for paper-and-pencil encryption. 
These are: 

(1) Locate vertices of the highest valency. 

(2) Locate the longest possible path. 

(3) Backtrack to the last branching point to visit all the vertices in that branch. 

(4) Continue the process until all vertices branching from the longest path have 
been accounted for. 

(5) Locate the next longest path and continue the process until all vertices in all 
paths have been recorded. 

However, step 2 (and therefore also step 5) is not universally applicable. 
Thus, the code for (10) derived by this method is 411020000, yet the lexicographically 
largest possible (and therefore correct) code is 420011000. 

By agreement with one of the authors [14], the following amended version 
of step 2 is suggested: 
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4 3 2 7 6 5 3 

5 2 

7 4 
9 9 

Incorrect N-tuple code: 411020000 

(10a) 

Correct N-tuple code: 420011000 

(10b) 

Locate the path that includes the earliest visits to the largest number 
of  branching vertices, with the longest such path being chosen if there 
is more than one, or if only non-branching paths are available. 

Appendix 2: The search for hexagon lattice trees of the 5-chain as an example of 
encoding and enumeration with the GN-tuple code and a spirally numbered hexagon 
reference grid 

The 5-chain has four edges, so the tuples from 3211 to 4444 (each digit >0 
and <5) are examined in combination with the N-tuple code for the 5-chain (21100), 
to see whether a lattice animal can be drawn. If it can, then its covering of  spiral 
reference numbers is minimised as described in the text. This generates the following 
list: 

Trial Struct. Minimised set of Corresponding Corresponding Struct. 
vector ref. numbers covered on edge list vector tuple ref. 
tuple hexagon grid (1) 

3222 (11) 1 2 3 4 5 1 -2  2 -  3 3 - 4  4 -  5 2344 (15) 
3232 (12) 1 2 3 4 10 1-2  1-10 2 -3  3 -  4 4443 (16) 
3224 (13) 1 2 3 4 10 1-2  1-10 2 -3  3 -  4 2234 (17) 
3234 (14) 1 2 3 9 10 1 -2  1-10 2 -3  9-10  2224 (18) 

5 5 5 5 

1 1 

4 2 3 4 
2 3 3 

4 

(11) (12) (13) (14) 

1 2 5 2 1 

5 2 4 
5 4 

4 

(15) 0 6 )  (17) (18) 
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Only single tuples for 1 and 4 are found. There is another lower valued tuple that 
is possible for number 1, namely 1444, obtained by reversing label pairs 1,5 and 
3,4 in (15), but this is ignored in the algorithm used because, to save time, testing 
starts with the tuple 3211. The third structure is found from its edge list to be 
identical to number 2, but its lower valued vector tuple (2234) is selected to form 
the final GN-tuple code, 221213040. The search therefore yields three distinct 
lattice paths, and these are coded as 221314040, 221213040 and 221212040, 
corresponding to (15), (17) and (18), respectively. 
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